Nonperturbative approach to Casimir interactions in periodic geometries
نویسندگان
چکیده
Due to their collective nature Casimir forces can strongly depend on the geometrical shape of the interacting objects. We study the effect of strong periodic shape deformations of two ideal metal plates on their quantum interaction. A nonperturbative approach which is based on a path-integral quantization of the electromagnetic field is presented in detail. Using this approach, we compute the force for the specific case of a flat plate and a plate with a rectangular corrugation. We obtain complementary analytical and numerical results which allow us to identify two different scaling regimes for the force as a function of the mean plate distance, corrugation amplitude, and wavelength. Qualitative distinctions between transversal electric and magnetic modes are revealed. Our results demonstrate the importance of a careful consideration of the nonadditivity of Casimir forces, especially in strongly nonplanar geometries. Nonperturbative effects due to surface edges are found. Strong deviations from the commonly used proximity force approximation emerge over a wide range of corrugation wavelengths, even though the surface is composed only of flat segments. We compare our results to that of a perturbative approach and a classical optics approximation.
منابع مشابه
Casimir forces in the time domain: Applications
Our previous article [Phys. Rev. A 80, 012115 (2009)] introduced a method to compute Casimir forces in arbitrary geometries and for arbitrary materials that was based on a finite-difference time-domain (FDTD) scheme. In this article, we focus on the efficient implementation of our method for geometries of practical interest and extend our previous proof-of-concept algorithm in one dimension to ...
متن کاملNew geometries in the Casimir effect: Dielectric gratings
An exact solution for the Casimir force between two arbitrary dielectric gratings with the same period d is presented. The Casimir energy for two dielectric gratings or periodic dielectrics is expressed in terms of Rayleigh coefficients. The theory is applied to calculate the Casimir force in several cases of interest.
متن کاملElectromechanical Performance of NEMS Actuator Fabricated from Nanowire under quantum vacuum fluctuations using GDQ and MVIM
The Casimir attraction can significantly interfere the physical response of nanoactuators. The intensity of the Casimir force depends on the geometries of interacting bodies. The present paper is dedicated to model the influence of the Casimir attraction on the electrostatic stability of nanoactuators made of cylindrical conductive nanowire/nanotube. An asymptotic solution, based on path-integr...
متن کاملEfficient computation of Casimir interactions between arbitrary 3D objects.
We introduce an efficient technique for computing Casimir energies and forces between objects of arbitrarily complex 3D geometries. In contrast to other recently developed methods, our technique easily handles nonspheroidal, nonaxisymmetric objects, and objects with sharp corners. Using our new technique, we obtain the first predictions of Casimir interactions in a number of experimentally rele...
متن کاملWeak and Repulsive Casimir Force in Piston Geometries
We study the Casimir force in piston-like geometries semiclassically. The force on the piston is finite and physical, but to leading semiclassical approximation depends strongly on the shape of the surrounding cavity. Whereas this force is attractive for pistons in a parallelepiped with flat cylinder head, for which the semiclassical approximation by periodic orbits is exact, this approximation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004